Total efficiency, unsurpassed performance!

The newly developed inverter-controlled compressor is a part of the secret behind the Diplomat Inverter, ground source heat pump with the highest SPF. The inverter-controlled compressor adjusts the heat load constantly according to the current heat demand. You never use more energy than is needed, and this of course reduces your energy bills further.

Our HGW* technical solution utilizes the normal heating space to also produce hot water. The result is that when the heat pump heats your home, it generates hot water at the same time. The built-in TWS technology** means that the hot water is produced faster and at higher temperatures than those methods used traditionally.

With the Thermia Diplomat Inverter you can customize a one-system solution that meets all your requirements, including heating, cooling, pool heating and all in combination with additional heat sources.

With Thermia Online you have the ability to remotely control and monitor your heat pump.

A+++ energy class when the heat pump is part of an integrated system
A++ energy class when the heat pump is the sole heat generator
Energy class according to Eco-design Directive 811/2013
Tap Water Stratification, our patented technology developed to ensure that the stored heat is always used optimally.

- **Hot Gas Water**: our patented technology that utilises existing heating production to heat domestic hot water simultaneously.

The measurements are performed on a limited number of heat pumps which can cause variations in the results. Tolerances in the measuring methods can also cause variations.

- **According to EN12102 and EN ISO 3741 (B0W35)**
- **Always check local rules and regulations before using antifreeze.**
- **At B0W35 Δ10K warm side (excluding circulation pumps).**
- **F-gas directive. Global Warming Potential (GWP) for R410A according to EC 517/2014 is 2088, giving a CO2 equivalent corresponding to:**

Connections Diplomat Inverter

The brine lines can be connected on either the left or right-hand sides of the heat pump.

1. Brine return line (Brine in), 28 mm
2. Brine supply line (Brine out), 28 mm
3. Heating system supply line, 28 mm
4. Heating system return line, 28 mm
5. Connection for bleed valve, 22 mm
6. Hot water pipe, 22 mm
7. Cold water pipe, 22 mm
8. Lead-in for incoming power supply, sensors, and communication cable

Connections Diplomat Duo Inverter

The brine lines can be connected on either the left or right-hand sides of the heat pump.

1. Cold water pipe, 22 mm (flexible hose)
2. Brine return line (Brine in), 28 mm
3. Brine supply line (Brine out), 28 mm
4. Heating system supply line, 28 mm
5. Heating system return line, 28 mm
6. Hot water pipe, 22 mm
7. Lead-in for incoming power supply, sensors and communication cable

Diplomat Inverter/Diplomat Duo Inverter

Heating capacity

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant</td>
<td>R410A</td>
<td>R410A</td>
</tr>
<tr>
<td>Compressor</td>
<td>Scroll</td>
<td>Scroll</td>
</tr>
<tr>
<td>Electrical data 3-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mains power supply</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Max working power, compressor</td>
<td>4.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Rated power, circulation pumps</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Auxiliary heater, 3 steps</td>
<td>0/3/6/9</td>
<td>0/3/6/9</td>
</tr>
<tr>
<td>Fuse (heat pump + auxiliary heater)</td>
<td>A</td>
<td>10/16/20/25</td>
</tr>
<tr>
<td>Energy class - system 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor heating (35°C), Radiator (55°C)</td>
<td>5.6</td>
<td>5.4</td>
</tr>
<tr>
<td>COP 3</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>COP 4</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP Floor heating (35°C)</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Energy class - product 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor heating (35°C), Radiator (55°C)</td>
<td>A+++</td>
<td>A+++</td>
</tr>
<tr>
<td>Domestic hot water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/min temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling circuit</td>
<td>20/-10</td>
<td>20/-10</td>
</tr>
<tr>
<td>Heating circuit</td>
<td>65/20</td>
<td>65/20</td>
</tr>
<tr>
<td>Anti-freeze 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol + water solution</td>
<td>-17°C ± 2</td>
<td></td>
</tr>
</tbody>
</table>

The measurements are performed on a limited number of heat pumps which can cause variations in the results. Tolerances in the measuring methods can also cause variations.

1) Fuse size depends on auxiliary heater (0/3/6/9 kW)
2) SCP according to EN844-1. Cold climate (Heaters), P design L: 15 kW, M: 12 kW
3) At SW 80/20: 10R warm side (excluding circulation pumps).
4) At SW 80/20 according to EN 12102 and EN 304 (B0W35)
5) Always check local rules and regulations before using antifreeze.
6) According to EN660, EN 50594 (B0W35)
7) When the heat pump is part of an integrated system.
10) When the heat pump is the sole heat generator and the built-in controller is not installed. According to Eco-design Directive 811/2013.
11) When the heat pump is the sole heat generator and the built-in controller is not installed. According to Eco-design Directive 811/2013.
12) When the heat pump is part of an integrated system.
13) When the heat pump is the sole heat generator and the built-in controller is not installed. According to Eco-design Directive 811/2013.
17) The refrigerant circuit is hermetically sealed and subject to the F-gas directive. Global Warming Potential (GWP) for R410A according to EC 517/2014 is 2088, giving a CO2 equivalent corresponding to M: 3758 kg, L: 4176 kg.